
Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps

Rafael Minguillón Sánchez
Technical Account Manager



Streamlined 
Enterprise Integration

Connecting intelligence and observability with 

secure action via Ansible Automation

EVENT

DECISIONAUTOMATION

Observable Intelligence

Network

Routers

IPAM

Switches

LBs

Infrastructure

Security

PAM

IDPS

SEIM

Firewalls

Edge

Hybrid cloud

Event Driven Ansible

ActionsRulesSources

2

Unleashing the Power of Red Hat Event-Driven Ansible for NetOps



 

Ansible Rulebooks 
Simple declarative decisions through rules

- name: Automatic Remediation of a web server

  hosts: all

  sources:

    - name: listen for alerts

      ansible.eda.alertmanager:

        host: 0.0.0.0

        port: 8000

  rules:

    - name: restart web server

      condition: event.alert.labels.job == "fastapi" 

and event.alert.status == "firing"

      action:

        run_job_template:

          name: "[JT] Restart Web Server"

▸ Events are processed by a rules engine
▹ Rules trigger based on conditions and actions can be 

carried out by the rules engine 
▹ Rules are organized into Ansible Rulebooks
▹ Ansible rules can apply to events occurring on specific  

hosts or groups

▸ Conditional management of actions to events
▹ Simple YAML structure for logical conditions
▹ Events can trigger different types of actions:

■ Run Ansible Playbooks
■ Run Modules
■ Post new events to the event handler

▸ YAML-like format familiarity
▹ Current Ansible users quickly learn and use Rulebook 

writing

3

Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps



Event-Driven Ansible
Automation Supporting Mission Critical Workloads

OBSERVE

EVALUATERESPOND

EVENT

DECISIONAUTOMATION

▪ Watch data / streaming data 
▪ Identify event
▪ With or without notification 

and ticketing integration 

▪ Routed for remediation
▪ Identify known problem
▪ Trigger required 

workflow

▪ No action required
▪ Automated resolution triggered
▪ Remediation action completed 
▪ Shorter MMTR 

Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps

4



Model-Driven Telemetry
Push-model monitoring and real-time operational statistics

Streamed from 
network devices. No 

polling required

Uses Reliable 
transport protocols. 

E.g. gRPC over HTTP

Powerful YANG data 
models vs weak 

SNMP MIBs. Can use 
Netconf and 

Restconf

5

Unleashing the Power of Red Hat Event-Driven Ansible for NetOps



Ansible Utils

An Ansible Collection to ease the management, manipulation, and validation of data  

# show interfaces
Ethernet1 is up, line protocol is up (connected)
  Hardware is Ethernet, address is 022e.dbe8.1375 (bia 
022e.dbe8.1375)
  Internet address is 172.18.104.95/16
  Broadcast address is 255.255.255.255
  Address determined by DHCP
  IP MTU 1500 bytes , BW 1000000 kbit
  Full-duplex, 1Gb/s, auto negotiation: on, uni-link: 
n/a
  Up 10 hours, 51 minutes, 55 seconds
  Loopback Mode : None
  3 link status changes since last clear
  Last clearing of "show interface" counters never
  5 minutes input rate 950 bps (0.0% with framing 
overhead), 1 packets/sec
  5 minutes output rate 858 bps (0.0% with framing 
overhead), 1 packets/sec
     19361 packets input, 2964452 bytes
     Received 0 broadcasts, 0 multicast
     0 runts, 0 giants
<rest of output removed for brevity>

  result["parsed"]:
    Ethernet1:
      hardware: Ethernet
      mac_address: 022e.dbe8.1375
      state:
        operating: up
        protocol: up
    Loopback0:
      hardware: Loopback
      state:
        operating: up
        protocol: up
    Tunnel0:
      hardware: Tunnel
      mac_address: ac12.685f.0800
      state:
        operating: up
        protocol: up

Network Device output Parsed Data

6

Unleashing the Power of Red Hat Event-Driven Ansible for NetOps



Cloud / On-Premise Datacenter

Telegraf

Ansible
Controller

Gitea

Demo Environment

7

Unleashing the Power of Red Hat Event-Driven Ansible for NetOps

Event-Driven 
Ansible

Kafka

PRO

DEV



Event-Driven 
Ansible

Ansible Controller

Provision  instances Auto-Discovery Base line Custom 
configuration

● Deploy in EC2

● Get IPS and 
FQDNs

● Create Inventory 
in the Ansible 
controller

● Get Facts

● Complete 
ServiceNow 
CMDB

● Create 
configuration  
and push to Git

● Create desired 
state json and 
push it to Git

● Configure 
Hostname

● Configure 
Credentials

● Configure 
Model-Driven 
Telemetry

● Download 
configuration 
files from Git

● Apply custom 
configuration

● Validate desired 
State

● Close Request

EDA Detects request 
event vía Servicenow Plugin

Event analysis and 
decision

Infrastructure Provision 
Provision, discovery and configuration 

as code in a single workflow

Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps

Service Request



Event-Driven 
Ansible

Ansible Controller

Check Operational 
State

Open ticket Fix Configuration Close ticket

● Download JSON 
from Git

● Parse and 
compare with 
operational state

● Fail if doesn’t 
match

● Open a ticket in 
ServiceNow

● Download 
Configuration 
from Git

● Apply 
Configuration

● Parse and 
compare with 
operational state

● Fill and close 
Servicenow ticket

Model-Driven Telemetry 
send change event to EDA

EDA Analyzes Kafka Topic 
event’s and triggers a job

Analyze changes and validate them to 
force the desired configuration state

Operational State Validation
Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps



Event-Driven Automation

Examples:
Github, GitLab

Pull Request Webhook

Development

Production

1

3
Git

2
4

Continuous 
Integration and 

Delivery 

5
Approve For 
production

6

Continuous 
Deployment 

Network Operator

Ansible Controller

Modify
Declarative
Data model 

---

---

name: example

key: value

declarative: data 

  

Automated NetOps
Using Gitops and Infrastructure as code 

to keep standard configurations

Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps



Thank you!

Unleashing the Power of 
Red Hat Event-Driven Ansible 
for NetOps


