Unleashing the Power of Red Hat Event-Driven Ansible for NetOps

Technical Account Manager

Ansible Rulebooks

Simple declarative decisions through rules

Events are processed by a rules engine

- Rules trigger based on conditions and actions can be carried out by the rules engine
- Rules are organized into Ansible Rulebooks
- Ansible rules can apply to events occurring on specific hosts or groups

Conditional management of actions to events

- Simple YAML structure for logical conditions
- Events can trigger different types of actions:
 - Run Ansible Playbooks
 - Run Modules
 - Post new events to the event handler

YAML-like format familiarity

 Current Ansible users quickly learn and use Rulebook writing

```
- name: Automatic Remediation of a web server
  hosts: all
  sources:
    - name: listen for alerts
      ansible.eda.alertmanager:
        host: 0.0.0.0
        port: 8000
  rules:
    - name: restart web server
      condition: event.alert.labels.job == "fastapi"
and event.alert.status == "firing"
      action:
        run job template:
            name: "[JT] Restart Web Server"
```


Event-Driven Ansible

Automation Supporting Mission Critical Workloads

Model-Driven Telemetry

Push-model monitoring and real-time operational statistics

Streamed from network devices. No polling required

Uses **Reliable** transport protocols. E.g. gRPC over HTTP

Powerful **YANG** data models vs weak SNMP MIBs. Can use Netconf and Restconf

Ansible Utils

An Ansible Collection to ease the management, manipulation, and validation of data

Network Device output

show interfaces Ethernet1 is up, line protocol is up (connected) Hardware is Ethernet, address is 022e.dbe8.1375 (bia 022e.dbe8.1375) Internet address is 172.18.104.95/16 Broadcast address is 255.255.255.255 Address determined by DHCP IP MTU 1500 bytes , BW 1000000 kbit Full-duplex, 1Gb/s, auto negotiation: on, uni-link: n/a Up 10 hours, 51 minutes, 55 seconds Loopback Mode : None 3 link status changes since last clear Last clearing of "show interface" counters never 5 minutes input rate 950 bps (0.0% with framing overhead), 1 packets/sec 5 minutes output rate 858 bps (0.0% with framing overhead), 1 packets/sec 19361 packets input, 2964452 bytes Received 0 broadcasts, 0 multicast 0 runts, 0 giants <rest of output removed for brevity>

Parsed Data

```
result["parsed"]:
Ethernet1:
  hardware: Ethernet
 mac address: 022e.dbe8.1375
  state:
    operating: up
    protocol: up
Loopback0:
  hardware: Loopback
  state:
    operating: up
    protocol: up
Tunnel0:
  hardware: Tunnel
 mac address: ac12.685f.0800
  state:
    operating: up
    protocol: up
```


Demo Environment

Infrastructure Provision

Provision, discovery and configuration as code in a single workflow

Operational State Validation

Analyze changes and validate them to force the desired configuration state

Automated NetOps

Using Gitops and Infrastructure as code to keep standard configurations

Unleashing the Power of Red Hat Event-Driven Ansible for NetOps

Thank you!

